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ABSTRACT: This second part of the study extends the data-driven analysis of the Energy Efficiency Dataset (ENB2012)
by developing and interpreting predictive machine-learning models for residential-building energy performance. Two
supervised regression models were implemented: a compact feedforward artificial neural network (ANN) and an Extreme
Gradient Boosting (XGBoost) ensemble. Both were trained on eight normalized geometric and design parameters to
estimate heating and cooling loads. The ANN architecture, consisting of three hidden layers (64-32—-16 neurons) with
ReLU activations, dropout regularization, and batch normalization, achieved coefficients of determination of R2 = 0.987
(heating) and Rz = 0.950 (cooling). XGBoost yielded slightly higher accuracies, with R2 = 0.998 and Rz = 0.988,
respectively. Model interpretability was addressed through SHAP and Partial Dependence Plot (PDP) analyses, which
revealed physically consistent relationships - particularly the dominant influence of relative compactness and glazing area
on thermal demand. The results demonstrate that explainable machine-learning approaches can accurately reproduce and
interpret thermodynamic patterns in building-energy data, providing a foundation for transparent, Al-assisted design and
retrofit decision-making.

Key-Words: Building energy efficiency; Heating and cooling load prediction; Machine learning; Regression modelling;
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1. INTRODUCTION AND MOTIVATION relationships identified in Part l.
Part |1 of this work presented a detailed Artificial neural networks (ANNSs) have
statistical analysis of the ENB2012 building- recently proven effective in modelling complex
energy  dataset, focusing on  feature energy systems where conventional regression
relationships,  data  distributions,  and methods are inadequate for representing
multicollinearity among  geometric  and coupled physical processes [1], [2].
envelope parameters. To retain  interpretability, this study
That preliminary study revealed that heating complements  predictive modelling  with
and cooling loads are strongly influenced by explainable-Al (XAl) techniques, including
relative compactness, surface area, and glazing Shapley Additive Explanations (SHAP) and
configuration, but also that these predictors Partial Dependence Plots (PDPs), which
exhibit substantial interdependence. quantify the relative influence and interaction
While such analysis clarified the structure of of design variables.

the dataset and established its suitability for Accordingly, the objectives of this second part
data-driven prediction, it did not yet involve are (i) to construct and optimize fully
the design or evaluation of predictive models. connected neural networks for predicting
The present paper-Part Il-extends that heating and cooling loads based on the
foundation by developing deep-learning ENB2012 features, and (ii) to analyze the
architectures capable of capturing the nonlinear learned feature importance patterns to ensure
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consistency with physical intuition regarding
building energy behavior.

2. DEEP LEARNING METHODOLOGY
2.1 Model Architecture

Fully connected artificial neural networks
(ANNSs) were developed to model the nonlinear
relationship between the eight input variables
and each energy-load target (Y: and Y2).
Each network consists of an input layer of
eight neurons, two to four hidden layers with
64-32-16 neurons respectively, and a single-
neuron linear output layer. Rectified Linear
Unit (ReLU) activations were used in all
hidden layers to ensure nonlinearity and stable
gradient propagation, while linear activation
was applied to the output node. Weights were
initialized using the He-normal scheme and
optimized with the Adam algorithm (learning
rate. = 0.001). Mean-squared error (MSE)
served as the loss function, and early stopping
was employed with a patience of 20 epochs to
prevent overfitting.

To provide a robust non-neural benchmark, an
Extreme Gradient Boosting (XGBoost) model
was implemented for both heating and cooling
load prediction. XGBoost is an ensemble
learning method that constructs an additive
sequence of decision trees, where each
successive tree minimizes the residuals of its
predecessors through gradient-based
optimization. In this work, the regressor
employed 400 estimators, a maximum tree
depth of 4, a learning rate of 0.05, and
subsample and column-sampling ratios of 0.9
to enhance generalization and reduce
overfitting. These hyperparameters were
selected empirically through preliminary
validation runs, balancing accuracy and
computational efficiency. The model was
trained using the standard squared error loss,
with early stopping triggered when the
validation loss stagnated for more than 20
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rounds. Owing to its ability to approximate
complex nonlinear functions through piecewise
partitions of the feature space, XGBoost
achieved slightly higher accuracy than the
ANN, particularly in the heating-load task.
However, its non-differentiable structure limits
direct gradient-based interpretability,
motivating the complementary use of SHAP
analysis for feature-attribution explanations.
3.2 Training Setup and Evaluation

Training and validation were performed using
the same 80 / 20 split adopted in Part 1.
Batch normalization and a dropout rate of 0.1
were introduced after each hidden layer to
enhance generalization.

All models were implemented in TensorFlow
2.15 / Keras and trained for a maximum of 500
epochs with mini-batches of 32 samples on a
standard CPU workstation (Intel i7, 16 GB
RAM).

Model performance was evaluated using the
same statistical metrics as in Part 1 to enable
direct comparison:
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The ANN results were benchmarked against a
Gradient-Boosting Regressor (XGBoost v1.7)
to quantify the relative gains of deep
architectures  over advanced tree-based
methods.

2.2. Explainability Techniques
To maintain interpretability, two
complementary explainable-Al (XAl) tools
were integrated:
1. SHAP (Shapley Additive Explanations)
[1] to compute global and local feature-
importance values based on cooperative-
game theory; and
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2. Partial Dependence Plots (PDPs) [2] to
visualize the marginal effect of each input
variable on predicted heating and cooling
loads.

These tools make it possible to interpret
the ANN’s learned relationships and verify
that the model’s logic aligns with physical
intuition-e.g., compactness lowering
heating demand or glazing increasing
cooling demand.

3. RESULTS AND EXPLAINABILITY

3.1 Quantitative performance
Both ANN and XGBoost regressors achieved

high predictive accuracy on the ENB2012
dataset.

For heating-load prediction (Y1), the ANN
reached R2 = 0.987, RMSE = 1.17 kWh m2 y™,
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whereas XGBoost achieved Rz = 0.998, RMSE
= 0.40 kWh m~ y™'. For cooling load (Y2), the
ANN obtained Rz = 0.968 and XGBoost R? =
0.988.

These results, summarized in Figure 2 and
Table 1, demonstrate that nonlinear models
substantially outperform the purely statistical
baselines reported in Part I. The XGBoost
model slightly exceeds the dense ANN in
accuracy due to its inherent capability to model
piecewise nonlinearities with fewer training
samples. Nevertheless, the ANN offers a
continuous differentiable representation that
can be coupled with gradient-based sensitivity
analyses, which makes it particularly useful for
design optimization tasks.
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Figure 1. The training curves for the ANN model

Table 1. The performance metrics for the two models employed in this stody

Model MAE RMSE R2
ANN (Heating) 0.845945 1.065021 0.989118
XGB (Heating) 0.292303 0.397895 0.998481
ANN (Cooling) 1.202565 1.813454 0.964508
XGB (Cooling) 0.67385 1.065218 0.987754
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3.2 SHAP-based global interpretability

The SHAP global-importance analysis (Figure
3a) quantifies the mean absolute contribution
of each input feature to the predicted heating
and cooling loads, providing an interpretable
ranking of the model’s learned dependencies.
For both targets, Overall Height emerges as the
most influential variable, with mean |SHAP|
values of +5.29 (for heating) and +4.29 (for
cooling). This reflects the geometric sensitivity
of energy demand to vertical scaling, which
directly alters surface-to-volume ratio and
buoyancy-driven convection. Wall Area and
Surface Area follow closely, confirming that
envelope exposure remains a critical
determinant of conductive and radiative heat
transfer. The influence of Glazing Area is also
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significant, particularly for cooling load
prediction, where it captures the strong
radiative and solar-gain effects through
fenestration. In contrast, Orientation, Glazing-
Area Distribution, and Roof Area show
comparatively minor impacts, suggesting that
their effects are either captured indirectly
through correlated features or are of secondary
importance in this synthetic dataset. Overall,
the SHAP hierarchy aligns with building-
physics intuition: larger, taller, and more
glazed geometries intensify both heating and
cooling requirements, demonstrating that the
neural model’s internal representations remain
consistent with thermodynamic reality.
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Figure 3a. SHAP global feature-importance ranking for the ANN model. Bars represent the mean
absolute SHAP value, indicating each feature’s average contribution to the predicted heating and
cooling loads. The consistent dominance of overall height, wall area, and glazing area demonstrates
that the ANN captured physically meaningful dependencies governing building thermal performance.

Interpretation of SHAP Beeswarm Plots

The SHAP Beeswarm diagrams (Figure 3c)
provide a detailed, instance-level view of how
individual feature values influence the ANN
predictions for heating and cooling loads. Each
point represents a specific observation, with
color indicating the feature’s magnitude and
horizontal displacement denoting its marginal
impact on the model output. For both targets,
Overall Height and Wall Area exhibit the most
pronounced effects: higher values (in red) are
consistently  associated  with  increased
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predicted loads, reflecting the higher
conductive and convective losses in taller or
more vertically extended geometries. Surface
Area and Glazing Area also show strong
positive correlations with both heating and
cooling demands, confirming that larger
envelope exposure and window area amplify
energy transfer. In  contrast, Relative
Compactness demonstrates the opposite trend-
lower compactness (blue) shifts SHAP values
toward higher loads, consistent with the
increased external surface relative to building
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volume.

Less influential variables such as Orientation
and Glazing-Area Distribution display mixed
or near-zero SHAP dispersion, suggesting
limited sensitivity in the synthetic dataset.
Overall, the Beeswarm patterns confirm that

SHAP Beeswarm - ANN_Cooling

i e
-’u...;*.. ” *. Yo
dratud | o Hisn-

- =t b s

- e -
afyslnsee
£

High
Overall Height

Wall Area

Surface Area

Glazing Area

Relative Compactness
Roof Area

Glazing Area Distribution * -‘*-

Orientation

-6 —4 -2 0 2 4 6
SHAP value (impact on model output)

Feature value

the neural model not only ranks the dominant
features accurately but also captures their
directionality in line with building-physics
expectations, reinforcing the interpretability

and physical consistency of the ANN
predictions.
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Figure 3c. SHAP Beeswarm plots showing the signed impact of each input feature on the predicted
heating and cooling loads (ANN model). Each dot represents one observation, colored by the feature’s
actual value. Red points indicate higher feature values, and blue points indicate lower ones. The
consistent directional trends confirm that the ANN has learned physically meaningful dependencies
between geometric parameters and thermal-energy demand.

It is interesting to note in Figure 3c that in
terms of quantitative influence the order of
variables is the same for both cooling and
heating loads.

3.3 Local and marginal effects

Partial Dependence Plots (PDPs) for the top
predictors (Figure 3b) further reveal smooth
nonlinear trends.

Heating load decreases exponentially with
increasing compactness up to a saturation
point, after which gains become marginal.
Cooling load, conversely, exhibits a mild U-
shaped response with compactness, suggesting
that very compact buildings may retain heat
during summer. For glazing area, PDPs show
nearly linear increases in cooling load,
confirming that larger window surfaces
consistently amplify cooling energy demand.
Overall, the ANN’s learned behavior aligns
with fundamental thermophysical principles,
validating its internal consistency.
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Figure 3b presents the partial dependence of
the predicted heating and cooling loads on four
principal design parameters. The results
illustrate  smooth,  monotonic  relations,
confirming that the neural model captures
physically meaningful trends. For Relative
Compactness, both heating and cooling loads
increase as compactness decreases, reflecting
higher thermal losses in elongated building
forms with greater exposed surface. The effect

is stronger for heating, indicating that
compactness is a dominant factor in winter
energy demand.

Surface Area shows the inverse behavior:
buildings with larger envelopes experience
systematically  lower  predicted loads,
confirming the complementary nature of these
correlated descriptors.

For Overall Height, both loads rise with
increasing height, which may be attributed to
the greater thermal gradients and internal air-
mixing effects in taller spaces. Finally, Glazing
Area produces a nearly linear increase in both
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heating and cooling loads, highlighting the
dual influence of window area: increased solar
gain amplifies cooling requirements while also
elevating winter heat losses. These consistent,

interpretable  relationships  reinforce the
model’s validity and demonstrate that the ANN
infers thermal-energy behavior aligned with
fundamental building-physics principles.

Partial Dependence of Key Features (ANN Models)
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Figure 3b. Partial dependence of predicted heating and cooling loads on key building parameters:
relative compactness, surface area, overall height, and glazing area. Each subplot shows the marginal
effect of a standardized feature while all others are held at their mean. Red solid lines correspond to
heating load predictions, and blue dashed lines to cooling load predictions (ANN model).

CONCLUSIONS

This two-part study has demonstrated a
systematic workflow for understanding and
predicting building energy performance using
the Energy Efficiency Dataset (ENB2012). In
Part 1, exploratory data analysis and
multicollinearity assessment revealed the
dominant role of compactness, surface area,
and glazing configuration in determining
heating and cooling demands. In Part |1, data-
driven models based on Artificial Neural
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Networks (ANN) and XGBoost were
developed and compared, achieving high
predictive accuracy (R2 > 0.98 for heating and

R = 095 for cooling). While XGBoost
provided  slightly  superior  numerical
performance, the ANN model offered a

continuous and differentiable representation
suitable for explainability analysis. Through
SHAP and Partial Dependence Plot (PDP)
techniques, the models were shown to learn
physically  consistent and interpretable
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relationships. Relative compactness and overall
height emerged as the strongest predictors of
heating load, whereas glazing area and surface
exposure predominantly influenced cooling
demand. The monotonic, directionally coherent
effects observed across all features confirm
that the learned dependencies are consistent
with thermodynamic expectations rather than
overfitting artifacts. The integration of
explainable Al (XAIl) methods proved critical
for validating and interpreting model behavior.
Such hybrid approaches-combining
quantitative performance with interpretability-
provide not only accurate forecasts but also
trustworthy insights for  energy-efficient
building  design.  The  methodological
framework presented here can be generalized
to other datasets and extended to multi-
objective optimization tasks, such as envelope
parameter tuning or retrofit prioritization.
Future research will focus on coupling these
interpretable models with physics-informed
neural architectures and real-world building

datasets to enhance generalizability and
practical adoption in sustainable energy
engineering.
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