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ABSTRACT: This second part of the study extends the data-driven analysis of the Energy Efficiency Dataset (ENB2012) 

by developing and interpreting predictive machine-learning models for residential-building energy performance. Two 

supervised regression models were implemented: a compact feedforward artificial neural network (ANN) and an Extreme 

Gradient Boosting (XGBoost) ensemble. Both were trained on eight normalized geometric and design parameters to 

estimate heating and cooling loads. The ANN architecture, consisting of three hidden layers (64–32–16 neurons) with 

ReLU activations, dropout regularization, and batch normalization, achieved coefficients of determination of R² = 0.987 

(heating) and R² = 0.950 (cooling). XGBoost yielded slightly higher accuracies, with R² = 0.998 and R² = 0.988, 

respectively. Model interpretability was addressed through SHAP and Partial Dependence Plot (PDP) analyses, which 

revealed physically consistent relationships - particularly the dominant influence of relative compactness and glazing area 

on thermal demand. The results demonstrate that explainable machine-learning approaches can accurately reproduce and 

interpret thermodynamic patterns in building-energy data, providing a foundation for transparent, AI-assisted design and 

retrofit decision-making. 
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1. INTRODUCTION AND MOTIVATION 

Part I of this work presented a detailed 

statistical analysis of the ENB2012 building-

energy dataset, focusing on feature 

relationships, data distributions, and 

multicollinearity among geometric and 

envelope parameters. 

That preliminary study revealed that heating 

and cooling loads are strongly influenced by 

relative compactness, surface area, and glazing 

configuration, but also that these predictors 

exhibit substantial interdependence. 

While such analysis clarified the structure of 

the dataset and established its suitability for 

data-driven prediction, it did not yet involve 

the design or evaluation of predictive models. 

The present paper-Part II-extends that 

foundation by developing deep-learning 

architectures capable of capturing the nonlinear 

relationships identified in Part I. 

Artificial neural networks (ANNs) have 

recently proven effective in modelling complex 

energy systems where conventional regression 

methods are inadequate for representing 

coupled physical processes [1], [2]. 

To retain interpretability, this study 

complements predictive modelling with 

explainable-AI (XAI) techniques, including 

Shapley Additive Explanations (SHAP) and 

Partial Dependence Plots (PDPs), which 

quantify the relative influence and interaction 

of design variables. 

Accordingly, the objectives of this second part 

are (i) to construct and optimize fully 

connected neural networks for predicting 

heating and cooling loads based on the 

ENB2012 features, and (ii) to analyze the 

learned feature importance patterns to ensure 
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consistency with physical intuition regarding

building energy behavior.

2. DEEP LEARNING METHODOLOGY

2.1 Model Architecture

Fully connected artificial neural networks

(ANNs) were developed to model the nonlinear

relationship between the eight input variables

and each energy-load target (Y₁ and Y₂).

Each network consists of an input layer of

eight neurons, two to four hidden layers with

64–32–16 neurons respectively, and a single-

neuron linear output layer. Rectified Linear

Unit (ReLU) activations were used in all

hidden layers to ensure nonlinearity and stable

gradient propagation, while linear activation

was applied to the output node. Weights were

initialized using the He-normal scheme and

optimized with the Adam algorithm (learning

rate = 0.001). Mean-squared error (MSE)

served as the loss function, and early stopping

was employed with a patience of 20 epochs to

prevent overfitting.

To provide a robust non-neural benchmark, an

Extreme Gradient Boosting (XGBoost) model

was implemented for both heating and cooling

load prediction. XGBoost is an ensemble

learning method that constructs an additive

sequence of decision trees, where each

successive tree minimizes the residuals of its

predecessors through gradient-based

optimization. In this work, the regressor

employed 400 estimators, a maximum tree

depth of 4, a learning rate of 0.05, and

subsample and column-sampling ratios of 0.9

to enhance generalization and reduce

overfitting. These hyperparameters were

selected empirically through preliminary

validation runs, balancing accuracy and

computational efficiency. The model was

trained using the standard squared error loss,

with early stopping triggered when the

validation loss stagnated for more than 20

rounds. Owing to its ability to approximate

complex nonlinear functions through piecewise

partitions of the feature space, XGBoost

achieved slightly higher accuracy than the

ANN, particularly in the heating-load task.

However, its non-differentiable structure limits

direct gradient-based interpretability,

motivating the complementary use of SHAP

analysis for feature-attribution explanations.

3.2 Training Setup and Evaluation

Training and validation were performed using

the same 80 / 20 split adopted in Part 1.

Batch normalization and a dropout rate of 0.1

were introduced after each hidden layer to

enhance generalization.

All models were implemented in TensorFlow

2.15 / Keras and trained for a maximum of 500

epochs with mini-batches of 32 samples on a

standard CPU workstation (Intel i7, 16 GB

RAM).

Model performance was evaluated using the

same statistical metrics as in Part 1 to enable

direct comparison:

𝑀𝐴𝐸 =
1

𝑛
∑ |𝑦𝑖 − 𝑦̂𝑖|𝑖 ,   (1)

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑦𝑖 − 𝑦̂𝑖)2𝑖 ,   (2)

𝑅2 = 1 −
∑ (𝑦𝑖−𝑦̂𝑖)

2
𝑖

∑ (𝑦𝑖−𝑦̅𝑖)
2

𝑖
(3)

The ANN results were benchmarked against a

Gradient-Boosting Regressor (XGBoost v1.7)

to quantify the relative gains of deep

architectures over advanced tree-based

methods.

2.2. Explainability Techniques

To maintain interpretability, two

complementary explainable-AI (XAI) tools

were integrated:

1. SHAP (Shapley Additive Explanations)

[1] to compute global and local feature-

importance values based on cooperative-

game theory; and
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2. Partial Dependence Plots (PDPs) [2] to

visualize the marginal effect of each input

variable on predicted heating and cooling

loads.

These tools make it possible to interpret

the ANN’s learned relationships and verify

that the model’s logic aligns with physical

intuition-e.g., compactness lowering

heating demand or glazing increasing

cooling demand.

3. RESULTS AND EXPLAINABILITY

3.1 Quantitative performance

Both ANN and XGBoost regressors achieved

high predictive accuracy on the ENB2012

dataset.

For heating-load prediction (Y₁), the ANN

reached R² = 0.987, RMSE = 1.17 kWh m⁻² y⁻¹,

whereas XGBoost achieved R² = 0.998, RMSE

= 0.40 kWh m⁻² y⁻¹. For cooling load (Y₂), the

ANN obtained R² = 0.968 and XGBoost R² =

0.988.

These results, summarized in Figure 2 and

Table 1, demonstrate that nonlinear models

substantially outperform the purely statistical

baselines reported in Part I. The XGBoost

model slightly exceeds the dense ANN in

accuracy due to its inherent capability to model

piecewise nonlinearities with fewer training

samples. Nevertheless, the ANN offers a

continuous differentiable representation that

can be coupled with gradient-based sensitivity

analyses, which makes it particularly useful for

design optimization tasks.

Figure 1. The training curves for the ANN model

Table 1. The performance metrics for the two models employed in this stody

Model MAE RMSE R²

ANN (Heating) 0.845945 1.065021 0.989118

XGB (Heating) 0.292303 0.397895 0.998481

ANN (Cooling) 1.202565 1.813454 0.964508

XGB (Cooling) 0.67385 1.065218 0.987754
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3.2 SHAP-based global interpretability 

The SHAP global-importance analysis (Figure 

3a) quantifies the mean absolute contribution 

of each input feature to the predicted heating 

and cooling loads, providing an interpretable 

ranking of the model’s learned dependencies. 

For both targets, Overall Height emerges as the 

most influential variable, with mean |SHAP| 

values of +5.29 (for heating) and +4.29 (for 

cooling). This reflects the geometric sensitivity 

of energy demand to vertical scaling, which 

directly alters surface-to-volume ratio and 

buoyancy-driven convection. Wall Area and 

Surface Area follow closely, confirming that 

envelope exposure remains a critical 

determinant of conductive and radiative heat 

transfer. The influence of Glazing Area is also 

significant, particularly for cooling load 

prediction, where it captures the strong 

radiative and solar-gain effects through 

fenestration. In contrast, Orientation, Glazing-

Area Distribution, and Roof Area show 

comparatively minor impacts, suggesting that 

their effects are either captured indirectly 

through correlated features or are of secondary 

importance in this synthetic dataset. Overall, 

the SHAP hierarchy aligns with building-

physics intuition: larger, taller, and more 

glazed geometries intensify both heating and 

cooling requirements, demonstrating that the 

neural model’s internal representations remain 

consistent with thermodynamic reality. 

 

Figure 3a. SHAP global feature-importance ranking for the ANN model. Bars represent the mean 

absolute SHAP value, indicating each feature’s average contribution to the predicted heating and 

cooling loads. The consistent dominance of overall height, wall area, and glazing area demonstrates 

that the ANN captured physically meaningful dependencies governing building thermal performance. 
 

Interpretation of SHAP Beeswarm Plots 

The SHAP Beeswarm diagrams (Figure 3c) 

provide a detailed, instance-level view of how 

individual feature values influence the ANN 

predictions for heating and cooling loads. Each 

point represents a specific observation, with 

color indicating the feature’s magnitude and 

horizontal displacement denoting its marginal 

impact on the model output. For both targets, 

Overall Height and Wall Area exhibit the most 

pronounced effects: higher values (in red) are 

consistently associated with increased 

predicted loads, reflecting the higher 

conductive and convective losses in taller or 

more vertically extended geometries. Surface 

Area and Glazing Area also show strong 

positive correlations with both heating and 

cooling demands, confirming that larger 

envelope exposure and window area amplify 

energy transfer. In contrast, Relative 

Compactness demonstrates the opposite trend-

lower compactness (blue) shifts SHAP values 

toward higher loads, consistent with the 

increased external surface relative to building 
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volume.

Less influential variables such as Orientation

and Glazing-Area Distribution display mixed

or near-zero SHAP dispersion, suggesting

limited sensitivity in the synthetic dataset.

Overall, the Beeswarm patterns confirm that

the neural model not only ranks the dominant

features accurately but also captures their

directionality in line with building-physics

expectations, reinforcing the interpretability

and physical consistency of the ANN

predictions.

Figure 3c. SHAP Beeswarm plots showing the signed impact of each input feature on the predicted

heating and cooling loads (ANN model). Each dot represents one observation, colored by the feature’s

actual value. Red points indicate higher feature values, and blue points indicate lower ones. The

consistent directional trends confirm that the ANN has learned physically meaningful dependencies

between geometric parameters and thermal-energy demand.

It is interesting to note in Figure 3c that in

terms of quantitative influence the order of

variables is the same for both cooling and

heating loads.

3.3 Local and marginal effects

Partial Dependence Plots (PDPs) for the top

predictors (Figure 3b) further reveal smooth

nonlinear trends.

Heating load decreases exponentially with

increasing compactness up to a saturation

point, after which gains become marginal.

Cooling load, conversely, exhibits a mild U-

shaped response with compactness, suggesting

that very compact buildings may retain heat

during summer. For glazing area, PDPs show

nearly linear increases in cooling load,

confirming that larger window surfaces

consistently amplify cooling energy demand.

Overall, the ANN’s learned behavior aligns

with fundamental thermophysical principles,

validating its internal consistency.

Figure 3b presents the partial dependence of

the predicted heating and cooling loads on four

principal design parameters. The results

illustrate smooth, monotonic relations,

confirming that the neural model captures

physically meaningful trends. For Relative

Compactness, both heating and cooling loads

increase as compactness decreases, reflecting

higher thermal losses in elongated building

forms with greater exposed surface. The effect

is stronger for heating, indicating that

compactness is a dominant factor in winter

energy demand.

Surface Area shows the inverse behavior:

buildings with larger envelopes experience

systematically lower predicted loads,

confirming the complementary nature of these

correlated descriptors.

For Overall Height, both loads rise with

increasing height, which may be attributed to

the greater thermal gradients and internal air‐

mixing effects in taller spaces. Finally, Glazing

Area produces a nearly linear increase in both
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heating and cooling loads, highlighting the

dual influence of window area: increased solar

gain amplifies cooling requirements while also

elevating winter heat losses. These consistent,

interpretable relationships reinforce the

model’s validity and demonstrate that the ANN

infers thermal‐energy behavior aligned with

fundamental building‐physics principles.

Figure 3b. Partial dependence of predicted heating and cooling loads on key building parameters:

relative compactness, surface area, overall height, and glazing area. Each subplot shows the marginal

effect of a standardized feature while all others are held at their mean. Red solid lines correspond to

heating load predictions, and blue dashed lines to cooling load predictions (ANN model).

CONCLUSIONS

This two-part study has demonstrated a

systematic workflow for understanding and

predicting building energy performance using

the Energy Efficiency Dataset (ENB2012). In

Part I, exploratory data analysis and

multicollinearity assessment revealed the

dominant role of compactness, surface area,

and glazing configuration in determining

heating and cooling demands. In Part II, data-

driven models based on Artificial Neural

Networks (ANN) and XGBoost were

developed and compared, achieving high

predictive accuracy (R² > 0.98 for heating and

R² ≈ 0.95 for cooling). While XGBoost

provided slightly superior numerical

performance, the ANN model offered a

continuous and differentiable representation

suitable for explainability analysis. Through

SHAP and Partial Dependence Plot (PDP)

techniques, the models were shown to learn

physically consistent and interpretable
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relationships. Relative compactness and overall

height emerged as the strongest predictors of

heating load, whereas glazing area and surface

exposure predominantly influenced cooling

demand. The monotonic, directionally coherent

effects observed across all features confirm

that the learned dependencies are consistent

with thermodynamic expectations rather than

overfitting artifacts. The integration of

explainable AI (XAI) methods proved critical

for validating and interpreting model behavior.

Such hybrid approaches-combining

quantitative performance with interpretability-

provide not only accurate forecasts but also

trustworthy insights for energy-efficient

building design. The methodological

framework presented here can be generalized

to other datasets and extended to multi-

objective optimization tasks, such as envelope

parameter tuning or retrofit prioritization.

Future research will focus on coupling these

interpretable models with physics-informed

neural architectures and real-world building

datasets to enhance generalizability and

practical adoption in sustainable energy

engineering.
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